Math 255A Lecture 27 Notes

Daniel Raban

December 6, 2018

1 **Reflexive Spaces and Kakutani's theorem**

Helly's lemma 1.1

Let B be a Banach space. Recall that B is called reflexive if the natural map $J: B \to B^{**}$ given by $x \mapsto (\xi \mapsto \langle x, \xi \rangle)$ is a bijection. We want to characterize reflexive spaces. First we need a lemma.

Lemma 1.1 (Helly). Let B be a Banach space, and let $\xi_1, \ldots, \xi_m \in B^*$ and $\alpha_1, \ldots, \alpha_n \in K$ $(= \mathbb{R} \text{ or } \mathbb{C})$. The following conditions are equivalent:

1. For each $\varepsilon > 0$, there exists $x_{\varepsilon} \in B$ such that $||x_{\varepsilon}|| \leq 1$ and $|\langle x_{\varepsilon}, \xi_j \rangle - \alpha_j| < \varepsilon$ for $1 \leq j \leq n$.

2. For all
$$\beta_1, \ldots, \beta_n \in K$$
, $|\sum_{j=1}^n \beta_j \alpha_j| \le ||\sum_{j=1}^n \beta_j \xi_j||$.

Proof. (1) \implies (2): Let $\beta_1, \ldots, \beta_n \in K$ be given, and let $S = \sum_{j=1}^n |\beta_j|$. For $\varepsilon > 0$, we 1 have

$$\left|\sum_{j=1}^{n}\beta_{j}\left\langle x_{\varepsilon},\xi_{j}\right\rangle - \sum_{j=1}^{n}\beta_{j}\alpha_{j}\right| < \varepsilon S \implies \left|\sum_{j=1}^{n}\beta_{j}\alpha_{j}\right| \leq \left\|\sum_{j=1}^{n}\beta_{j}\xi_{j}\right\| \underbrace{\|x_{\varepsilon}\|}_{\leq 1} + \varepsilon S.$$

Letting $\varepsilon \to 0$ gives us $|\sum_{j=1}^{n} \beta_j \alpha_j| \le ||\sum_{j=1}^{n} \beta_j \xi_j||$. (2) \implies (1): Consider the linear, continuous map $F : B \to K^n$ sending $x \mapsto$ $(\langle x, \xi_1 \rangle, \dots, \langle x, \xi_n \rangle)$. Then condition 1 holds if and only if $(\alpha_1, \dots, \alpha_n) \in F(\{x \in B : ||x|| \le 1\})$ 1}). Assume that $(\alpha_1, \ldots, \alpha_n) \notin F(\{x \in B : ||x|| \le 1\})$ (which is closed and convex in K^n). By the geometric Hahn-Banach theorem, there exists a continuous, linear form f on K^n and $\gamma \in \mathbb{R}$ such that $\operatorname{Re}(f(y)) < \gamma < \operatorname{Re}(f(\alpha_1, \dots, \alpha_n))$ for all $y \in F(\{x \in B : ||x|| \le 1\})$. Writing $f(y) = \beta \cdot y = \sum_{j=1}^{n} \beta_j y_j$, we get

$$\operatorname{Re}\left(\sum_{j=1}^{n}\beta_{j}\left\langle x,\xi_{j}\right\rangle\right) < \gamma < \operatorname{Re}\left(\sum_{j=1}^{n}\alpha_{j}\beta_{j}\right) \leq \left|\sum_{j=1}^{n}\alpha_{j}\beta_{j}\right|$$

for all $x \in B$ with $||x|| \leq 1$. So

$$\operatorname{Re}\left\langle x, \sum_{j=1}^{n} \beta_{j} \xi_{j} \right\rangle < \gamma < \left| \sum_{j=1}^{n} \alpha_{j} \beta_{j} \right|$$

for all $x \in B$ with $||x|| \leq 1$. Replacing x by $e^{i\theta}x$ (with $\theta \in \mathbb{R}$), we get by varying θ that

$$\left\langle x, \sum_{j=1}^{n} \beta_j \xi_j \right\rangle < \gamma < \left| \sum_{j=1}^{n} \alpha_j \beta_j \right|$$

if $||x|| \leq 1$. That is,

$$\left\|\sum_{j=1}^n \beta_j \xi_j\right\| \le \gamma < \left|\sum_{j=1}^n \alpha_j \beta_j\right|,$$

which contradicts condition 2.

Lemma 1.2. Let B be a Banach space. Then the set $J(\{x \in B : ||x|| \le 1\})$ is dense in $\{z \in B^{**} : ||z|| \le 1\}$ for the weak topology $\sigma(B^{**}, B^*)$.

Proof. Let $z \in B^{**}$ with $||z|| \leq 1$, and let V be an open neighborhood of z in the topology $\sigma(B^{**}, B^*)$. We claim that $V \cap J(\{x \in B : ||x|| \leq 1\}) \neq \emptyset$. We may assume that V has the form $V = \{y \in B^{**} : |\langle \xi_j, y - z \rangle| < \varepsilon \ \forall 1 \leq j \leq n\}$ with $\varepsilon > 0$ and $\xi_j \in B^*$. We must show that there exists $x \in B$ with $||x|| \leq 1$ such that $|\langle x, \xi_j \rangle - \langle \xi_j, z \rangle| < \varepsilon$ for $1 \leq j \leq n$. Letting $\alpha_j = \langle \xi_j, z \rangle$, we notice that for all $\beta_1, \ldots, \beta_n \in K$,

$$\left|\sum_{j=1}^{n}\beta_{j}\alpha_{j}\right| = \left|\left\langle\sum_{j=1}^{n}\beta_{j}\xi_{j}, z\right\rangle\right| \le \left\|\sum_{j=1}^{n}\beta_{j}\xi_{j}\right\|_{B^{*}} \underbrace{\|z\|_{B^{**}}}_{\le 1} \le \left\|\sum_{j=1}^{n}\beta_{j}\xi_{j}\right\|_{B^{*}}.$$

By the previous lemma, there exists an $x_{\varepsilon} \in B$ with $||x_{\varepsilon}|| \leq 1$ such that $|\langle x_{\varepsilon}, \xi_j \rangle - \alpha_j| < \varepsilon$. Thus, $J(x_{\varepsilon}) \in J(\{x \in B : ||x|| \leq 1\}) \cap V$.

Remark 1.1. Notice that $J(\{x \in B : ||x|| \le 1\}) \subseteq \{z \in B^{**} : ||z|| \le 1\}$ is closed in the strong sense.

1.2 Kakutani's theorem

Proposition 1.1. Let B_1, B_2 be Banach spaces, and let $T \in \mathcal{L}(B_1, B_2)$. Then $T : (B_1, \sigma(B_1, B_1^*)) \to (B_2, \sigma(B_2, B_2^*))$ is continuous.

Proof. Let $O \subseteq B_2$ be open for $\sigma(B_2, B_2^*)$. We may assume that $O = \{y \in B_2 : |\langle y - x, \eta_j \rangle | < \varepsilon \, \forall 1 \le j \le n\}$, where $x \in B_2$, $\eta_j \in B_2^*$, and $\varepsilon > 0$. Then

$$T^{-1}(O) = \{ z \in B_1 : | \langle Tz - x, \eta_j \rangle | < \varepsilon \ \forall 1 \le j \le n \}$$

= $\{ z \in B_1 : | \langle Tz, \eta_j \rangle - \langle x, \eta_j \rangle | < \varepsilon \ \forall 1 \le j \le n \}$
= $\{ x \in B_1 : | \langle z, T^*\eta_j \rangle - \langle x, \eta_j \rangle | < \varepsilon \ \forall 1 \le j \le n \},$

which is open in B_1 for $\sigma(B_1, B_1^*)$ since $T^*\eta_i \in B_1^*$.

Theorem 1.1 (Kakutani). A Banach space B is reflexive if and only if the closed unit ball $\{x \in B : ||x|| \le 1\}$ is compact for the weak topology $\sigma(B, B^*)$.

Proof. Assume first that B is reflexive. Then $J(\{x \in B : \|x\|_B \leq 1\}) = \{y \in B^{**} : \|y\|_{B^{**}} \leq 1\}$ is compact in the weak* topology $\sigma(B^{**}, B^*)$ by Banach Alaoglu. We only have to check that $J^{-1} : (B^{**}, \sigma(B^{**}, B^*)) \to (B, \sigma(B, B^*))$ is continuous (as a continuous image of a compact set is compact). When $O = \{y \in B : |\langle y - x, \xi \rangle| < \varepsilon\}$ with $x \in B$, $\xi \in B^*$ and $\varepsilon > 0$ is open in $\sigma(B, B^*)$, it suffices to check that $(J^{-1})^{-1}(O) = J(O)$ is open in B^{**} with respect to $\sigma(B^{**}, B^*)$. This follows from $J(O) = \{z \in B^{**} : |\langle \xi, z \rangle - \langle x, \xi \rangle| < \varepsilon\}$.

Assume that $\{x \in B : ||x|| \leq 1\}$ is compact for the weak topology $\sigma(B, B^*)$. We claim that the map $J : (B, \sigma(B, B^*)) \to (B^{**}, \sigma(B^{**}, B^{***}))$ is continuous. Indeed, $J : B \to B$ is strongly continuous (as an isometry), and so the claim follows. Now $B^* \subseteq B^{***}$, so the topology $\sigma(B^{**}, B^*)$ on B^{**} is weaker than $\sigma(B^{**}, B^{***})$, and it follows that $J : (B, \sigma(B, B^*)) \to (B^{**}, \sigma(B^{**}, B^*))$ is continuous. We get that $J(\{x \in B : ||x|| \leq 1\})$ is compact for $\sigma(B^{**}, B^*)$ as the continuous image of a compact set is compact. It is also dense in $\{x \in B^{**} : ||z|| \leq 1\}$ for the topology $\sigma(B^{**}, B^*)$. Therefore, $J(\{x \in B : ||x|| \leq 1\})$ $I\} = \{z \in B^{**} : ||z|| \leq 1\}$ and hence, $J(B) = B^{**}$. So B is reflexive. \Box